CALCULUS BC . WORKSHEET ON EULER'S METHOD

Work the following on notebook paper, showing all steps.

- 1. (a) Given the differential equation $\frac{dy}{dx} = x + 2$ and y(0) = 3. Find an approximation for y(1) by using Euler's method with two equal steps. Sketch your solution.
 - (b) Solve the differential equation $\frac{dy}{dx} = x + 2$ with the initial condition y(0) = 3, and use your solution to find y(1).
 - (c) The error in using Euler's Method is the difference between the approximate value and the exact value. What was the error in your answer? How could you produce a smaller error using Euler's Method?
- 2. Suppose a continuous function f and its derivative f' have values that are given in the following table. Given that f(2) = 5, use Euler's Method with two steps of size $\Delta x = 0.5$ to approximate the value of f(3).

Х	2.0	2.5	3.0
f'(x)	0.4	0.6	0.8
f(x)	5		

- 3. Given the differential equation $\frac{dy}{dx} = \frac{1}{x+2}$ and y(0) = 1. Find an approximation of y(1) using Euler's Method with two steps and step size $\Delta x = 0.5$.
- 4. Given the differential equation $\frac{dy}{dx} = x + y$ and y(1) = 3. Find an approximation of y(2) using Euler's Method with two equal steps.
- 5. The curve passing through (2, 0) satisfies the differential equation $\frac{dy}{dx} = 4x + y$. Find an approximation to y(3) using Euler's Method with two equal steps.
- 6. Assume that f and f' have the values given in the table. Use Euler's Method with two equal steps to approximate the value of f(4.4).

х	4	4.2	4.4
f'(x)	-0.5	-0.3	-0.1
f(x)	2		

7. The table gives selected values for the derivative of a function f on the interval $-2 \le x \le 2$. If f(-2) = 3 and Euler's method with a step-size of 1.5 is used to approximate f(1), what is the resulting approximation?

42 12 120 7			
f'(x)			
-0.8			
-0.5			
-0.2			
0.4			
0.9			
1.6			
2.2			
3			
3.7			

8. Let y = f(x) be the particular solution to the differential equation $\frac{dy}{dx} = x + 2y$ with the initial condition f(0) = 1. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate f(-0.6).

Answers

- 1. (a) $5\frac{1}{4}$
 - (b) $5\frac{1}{2}$
 - (c) Error = $\frac{1}{4}$. Use smaller steps.
- 2.5.5
- 3. 1.45
- 4. 8.25
- 5. 11
- 6. 1.84
- 7.2.4
- 8.0.25

$$1a \frac{dy}{dx} = x+2, \quad y(0) = 3$$

$$\frac{\chi}{0} \frac{y}{3} \frac{dy}{d\chi}$$
0 3 2 $\Rightarrow y-3=2(x-0)$
1 5.25 $\Rightarrow y-4=2.5(x-1/2)$

Who dy =
$$x + 2$$
, $y(0) = 3$

The dy = $(x+2) dx$

The dy = $\int (x+2) dx$
 $y = \frac{1}{2}x^2 + 2x + c$

$$\int dy = \int (x+z) dx$$

$$y = \frac{1}{2}x^2 + 2x + c$$

$$y(0) = 0 + 0 + 3 = 3$$

$$y = \frac{1}{2}x^2 + 2x + 3$$

$$y(1) = \frac{1}{2} + 2 + 3 = 5.5$$

2.
$$f(2) = 5$$
, $f'(2) = 0.4$

X	1 9	0.4 0.6		
2	5	0.4	7	y-5 = 0.4(x-2)
2.5	5.2	0.6		y-5.2 = 0.6(x-2.5)
3	5.5	l		

3.
$$\frac{dy}{dx} = \frac{1}{x+2}$$
, $y(0) = 1$

χ	y	dy/dx	
1/2	1.25	1/2	y-1 = 1/2 (x-0) y-1.25 = 2/5 (x-1/2)

4.
$$\frac{dy}{dx} = x + y$$
, $y(1) = 3$

\propto) y	dyidx			
l	3	4	· →	y - 3	= 4(x-1)
1.5	5	6.5	7	4 - 5	= 65(x-1.5)
2	8.25				,

5.
$$y(2)=0$$
 $\frac{dy}{dx}=4x+y$

		dy id x			
2	0	8	->	y -0 =	8(x-2)
2.5	4	14	->	y - 4 =	14 (x-2.5)
3	11				

$$6. f(4) = 2.$$

		dy/dx	
4 4.2 4.4	1.9.	-0.5 → -0.3 →	y-2=-0.5(x-4) y-1.90=-0.3(x-4.2)

7.
$$F(-2) = 3$$

X	y	dyldx		
- 2	3	-0.8	\rightarrow	y-3=-0.8(x+2)
		0.4	->	y-1.8 = 0.4 (x+1,2)
1	2.4			5 10 0.7 6.0 1.75

8.
$$\frac{dy}{dx} = x + 2y$$
, $f(0) = 1$

$$\frac{x}{0} = \frac{y}{0} = \frac{1}{2} + 2y$$
, $f(0) = 1$

$$\frac{x}{0} = \frac{1}{2} + 2y$$
, $y - 1 = \frac{1}{2} = \frac{1}{2}$